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a b s t r a c t

This paper investigates the distributed tracking problem for a class of high-order stochastic nonlinear
multi-agent systems where the subsystem of each agent is driven by nonlinear drift and diffusion terms.
For the case where the graph topology is directed and the leader is the neighbor of only a small portion of
followers, a new distributed integrator backstepping designmethod is proposed, and distributed tracking
control laws are designed, which can effectively deal with the interactions among agents and coupling
terms. By using the algebra graph theory and stochastic analysis, it is shown that the closed-loop system
has an almost surely unique solution on [0, ∞), all the states of the closed-loop system are bounded in
probability, and the tracking errors can be tuned to arbitrarily small with a tunable exponential converge
rate. The efficiency of the tracking controller is demonstrated by a simulation example.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Research on distributed tracking of networked cooperative
systems has attracted much attention in the past two decades
due to their wide practical applications in areas such as large
scale robotic systems (Belta & Kumar, 2002) and biological systems
(Olfati-Saber, 2006). The main task of the distributed tracking is to
drive the states of the followers to converge to those of a time-
varying leader in the circumstance where only a portion of the
followers has access to the leader’s states and the followers have
only local interactions. For this kind of problems, Hu and Hong
(2007) and Zhu and Cheng (2010) consider the case with time-
varying delays in autonomous agents. Hu and Feng (2010), Huang
andManton (2009) andMa, Li, and Zhang (2010) consider the case
with noises in communication channels. Hong and Wang (2009)
and Lou, Hong, and Shi (2012) consider the case with switching
topology.

✩ The material in this paper was partially presented at the 19th IFAC World
Congress, August 24–29, 2014, Cape Town, South Africa. This paper was
recommended for publication in revised form by Associate Editor Changyun Wen
under the direction of Editor Miroslav Krstic.
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Since all physical systems are nonlinear in nature (Khalil, 2002),
it is necessary and beneficial to study the distributed problem in
a network of nonlinear dynamical systems. Shi and Hong (2009)
consider global target aggregation and state agreement of nonlin-
ear multi-agent systems with switching topologies. Song, Cao, and
Yu (2010) present a pinning control and achieves leader-following
consensus formulti-agent systems described by nonlinear second-
order dynamics. Yu, Chen, and Cao (2011) investigate the consen-
sus issue for the case where the nonlinear intrinsic function is
Lipschitz and the directed network is generalized algebraically
connected. Meng, Lin, and Ren (2013) study the distributed robust
cooperative tracking problem for multiple non-identical second-
order nonlinear systems with bounded external disturbances.

Although some progress has been made towards cooperative
tracking control of nonlinear multi-agent systems, the existing
literature often assumes a simplified system model such as single
integrators or double integrators. Also, there are very few results
considering stochastic noise. This limits the validity of the models,
since stochastic nonlinear systems are ubiquitous in practice. Thus,
it is important for us to consider the distributed tracking problem
of multi-agent systems with stochastic nonlinear dynamics.

In this paper, the distributed tracking problem of high-order
stochastic nonlinear multi-agent systems with inherent nonlinear
drift and diffusion terms is investigated under a directed graph
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topology. By using the algebra graph theory and stochastic analy-
sis method, distributed controllers are designed to ensure that the
tracking error converges to an arbitrarily small pre-given neigh-
borhood of zero. The main contributions of this paper include:

(1) A new distributed integrator backstepping design is proposed.
Different from the traditional integrator backstepping design
method used for the single-agent system (Deng & Krstić, 1997;
Krstić & Deng, 1998; Li &Wu, 2013; Li, Xie, & Zhang, 2011; Liu,
Jiang, & Zhang, 2008; Liu, Zhang, & Jiang, 2007), the distributed
tracking control design for nonlinear multi-agent systems
needs to consider the interactions among agents, coupling
terms indynamics, and the capability on information collection
of each agent and so on, whichmakes the controller design and
performance analysis of the closed-loop systems much more
difficult, and new design tools and analysis methods should be
introduced.

(2) The systems investigated is high-order, stochastic and with
inherent nonlinear drift and diffusion terms. Most of the
available results about nonlinearmulti-agent systems focus on
the dynamics described by single or double integrators (Meng
et al., 2013; Shi & Hong, 2009; Song et al., 2010). Recently,
Zhang and Frank (2012) investigate the cooperative tracking
control of higher-order nonlinear systems with Brunovsky
form, in which the first (M − 1)-dimensional subsystem is
linear and the last 1-dimensional subsystem is nonlinear in
each agent. However, in this paper, for each agent, all the
subsystems are allowed to be nonlinear. Besides, we consider
stochastic noises which makes the system model much more
general and practical.

(3) The distributed controllers are designed to ensure that the
tracking error exponentially converges to an arbitrarily pre-
given small neighborhood of zero. The bound of tracking errors
and the convergence rate can be explicitly given.

The remainder of this paper is organized as follows. Section 2
is on notation. Section 3 is for problem formulation. Section 4
presents a distributed integrator backstepping design method.
Section 5 analyzes the performance properties of the closed-loop
systems. Section 6 gives a numerical example to show the effec-
tiveness of the theoretical results. Section 7 includes some con-
cluding remarks.

2. Notation

The following notation will be used throughout the paper. For a
given vector or matrix X , XT denotes its transpose. Tr{X} denotes
its tracewhen X is square, and |X | is the Euclidean norm of a vector
X . Let G = (V, E, A) be a weighted digraph of order n with the set
of nodes V = {1, 2, . . . , n}, set of arcs E ⊂ V ×V , and a weighted
adjacency matrix A = (aij)n×n with nonnegative elements. (j, i) ∈

E means that agent j can directly send information to agent i. In
this case, j is called the parent of i, and i is called the child of j.
The set of neighbors of vertex i is denoted by Ni = {j ∈ V :

(j, i) ∈ E, i ≠ j}. aij > 0 if node j is a neighbor of node i
and aij = 0 otherwise. In this paper, we assume that there is
no self-loop, i.e. aii = 0. Node i is called an isolated node, if it
has neither parent nor child. Node i is called a source if it has no
parents but children. Denote the sets of all sources and isolated
nodes in V by Vs = {j ∈ V|Nj = ∅, ∅ is the empty set}. To avoid
the trivial cases, V − Vs ≠ ∅ is always assumed in this paper. A
sequence (i1, i2), (i2, i3), . . . , (ik−1, ik) of edges is called a directed
path from node i1 to node ik. A directed tree is a digraph, where
every node except the root has exactly one parent and the root
is a source. A spanning tree of G is a directed tree whose node
set is V and whose edge set is a subset of E . The diagonal matrix
D = diag(κ1, κ2, . . . , κn) is the degree matrix, whose diagonal
elements κi =


j∈Ni
aij. The Laplacian of a weighted digraph G

is defined as L = D − A.
We consider a system consisting of n agents and a leader (la-

beled by 0) which is depicted by a graph Ḡ = (V̄, Ē), where
V̄ = {0, 1, 2, . . . , n}, set of arcs Ē ⊂ V̄ × V̄ . If (0, i) ∈ Ē , then
0 ∈ Ni. A diagonal matrix B = diag(b1, b2, . . . , bn) is the leader
adjacency matrix associated with Ḡ, where bi > 0 if node 0 is a
neighbor of node i; and bi = 0, otherwise.

Definition 1 (Krstić & Deng, 1998). A stochastic process x(t) is said
to be bounded in probability if |x(t)| is bounded in probability
uniformly in t , i.e.,

lim
c→∞

sup
t>t0

P{|x(t)| > c} = 0.

3. Problem formulation

Consider the following high-order stochastic nonlinear multi-
agent systems (the followers) with inherent nonlinear drift and
diffusion terms described by:
dxij = (xi,j+1 + fij(x̄ij))dt + gij(x̄ij)dω, j = 1, . . . , ni − 1,
dxi,ni = (ui + fi,ni(x̄i,ni))dt + gi,ni(x̄i,ni)dω,

yi = xi1, (1)
where x̄ij = (xi1, . . . , xij)T ∈ Rj, ui ∈ R, yi ∈ R are the state, in-
put, output of the ith follower, respectively, i = 1, . . . ,N . ω is an
m-dimensional independent standard Wiener process defined on
the complete probability space (Ω, F , Ft , P) with a filtration Ft
satisfying the usual conditions (i.e., it is increasing and right con-
tinuous while F0 contains all P-null sets). The unknown functions
fij and gij are smooth with fij(0) = 0, gij(0) = 0, i = 1, . . . ,N, j =

1, . . . , ni.
The following assumptions are made on system (1).

Assumption 1. The unknown functions fij(x̄ij) and gij(x̄ij) are
bounded by known nonnegative smooth functions. Specifically,
there exist known nonnegative smooth functions f̄ij(x̄ij) and ḡij(x̄ij)
such that

|fij(x̄ij)| ≤ f̄ij(x̄ij), |gij(x̄ij)| ≤ ḡij(x̄ij).

Assumption 2. The leader’s output y0(t) ∈ R and ẏ0(t) are
bounded, and they are only available for the ith follower satisfying
0 ∈ Ni, i = 1, . . . ,N .

Assumption 3. The leader is the root of a spanning tree in Ḡ.

Remark 1. The assumption on the drift term fij(x̄ij) and diffusion
term gij(x̄ij) is very general, i = 1, . . . ,N, j = 1, . . . , ni. These
terms do not need to satisfy global Lipschitz condition (Li, Ren, Liu,
& Fu, 2013).

Now, we give the definition for distributed practical output
tracking.

Definition 2. The distributed practical output tracking problem
for system (1) is solvable if for any given ε > 0, there exists a set
of distributed control laws such that:
(a) all the states of the closed-loop system are bounded in proba-

bility;
(b) for any initial value x(t0), there is a finite-time T (x(t0), ε) such

that

E|yi(t) − y0(t)|4 < ε, ∀t > T (x(t0), ε), i = 1, . . . ,N.

The purpose of this paper is to design distributed tracking con-
trollers to solve the distributed practical output tracking problem
for system (1).
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4. Distributed integrator backstepping design

In this section, a distributed integrator backstepping design
technique is developed, bywhich distributed tracking control laws
are designed for system (1).

The following lemma is frequently used throughout the design
process.

Lemma 1. If Assumption 3 holds, then, for i = 1, . . . ,N, di =

bi +
N

s=1 ais > 0.
Proof. By Assumption 3 and the definition of spanning tree, one
can get the conclusion easily.

With the help of Lemma 1, we have the following theorem.

Theorem 1. For i = 1, . . . ,N, j = 2, . . . , ni, let

ξi1 =

N
s=1

ais(yi − ys) + bi(yi − y0), ξij = xij − x∗

ij,

x∗

ij = −ξi,j−1ρi,j−1(Λi,j−1) +
1
di

N
s=1

aisxsj, (2)

and Vi,ni =
1
4

ni
j=1 ξ 4

ij . Then, under Assumptions 1–3 we have

LVi,ni ≤ −

ni−1
j=1

(cij − δi,ni,j)ξ
4
ij + ξ 4

i,niρi,ni,1(Λi,ni)

+ ξ 3
i,niui −

1
di

ξ 3
i,ni

N
s=1

aisus +

ni
s=1

βis, (3)

where cij > 0, j = 1, . . . , ni − 1, are design parameters; δi,ni,j > 0
and βis > 0 are constants, j = 1, . . . , ni − 1, s = 1, . . . , ni;
ρi,ni,1(Λi,ni) is a nonnegative smooth function to be designed later,
Λi,j = (x11, . . . , xN1, . . . , x1j, . . . , xNj)T .
Proof. By Assumption 3 and Lemma 1, one can see that (2) is well-
defined.

The proof will be proceeded step by step.
Step 1.We firstly construct a distributed virtual controller x∗

i2 for
the ξi1-subsystem.

From (1)–(2) it follows that

dξi1 =

 N
s=1

ais(xi2 + fi1(xi1) − xs2 − fs1(xs1))

+ bi(xi2 + fi1(xi1) − ẏ0)

dt +

 N
s=1

ais(gi1(xi1)

− gs1(xs1)) + bigi1(xi1)

dω

=


dixi2 + difi1(xi1) −

N
s=1

ais(xs2 + fs1(xs1))

− biẏ0

dt +


digi1(xi1) −

N
s=1

aisgs1(xs1)

dω. (4)

Choosing Vi1 =
1
4ξ

4
i1, by (4) one can get

LVi1 ≤ diξ 3
i1xi2 +

3
2
ξ 2
i1

digi1(xi1) −

N
s=1

aisgs1(xs1)


2

+ ξ 3
i1


difi1(xi1) − biẏ0 −

N
s=1

aisfs1(xs1)



− ξ 3
i1

N
s=1

aisxs2. (5)
By Assumptions 1 and 2, there exist nonnegative smooth functions
ρi11(Λi1) and ρi12(Λi1) such thatdifi1(xi1) − biẏ0 −

N
s=1

aisfs1(xs1)


≤ di|fi1(xi1)| + bi|ẏ0| +

N
s=1

ais|fs1(xs1)|

≤ di f̄i1(xi1) + bič +

N
s=1

ais f̄s1(xs1)

= ρi11(Λi1),digi1(xi1) −

N
s=1

aisgs1(xs1)


2

≤ 2d2i |gi1(xi1)|
2
+ N

N
s=1

a2is|gs1(xs1)|
2

≤ 2d2i ḡ
2
i1(xi1) + N

N
s=1

a2isḡ
2
s1(xs1)

= ρi12(Λi1), (6)

where č is the bound of ẏ0; Λi1 = (x11, . . . , xN1)
T . By (6) and

Young’s inequality in Krstić and Deng (1998) we have

ξ 3
i1


difi1 − biẏ0 −

N
s=1

aisfs1


≤ βi11 + ξ 4

i1ρi13(Λi1),

3
2
ξ 2
i1

digi1 −

N
s=1

aisgs1


2

≤ βi12 + ξ 4
i1ρi14(Λi1), (7)

where βi11 and βi11 are any positive constants; ρi13(Λi1) and
ρi14(Λi1) are nonnegative smooth functions satisfying

ρi13(Λi1) ≥
3
4

(4βi11)
−1/3 ρ

4/3
i11 , ρi14(Λi1) ≥

9
16

β−1
i12ρ2

i12.

By (5) and (7) one has

LVi1 ≤ diξ 3
i1xi2 + ξ 4

i1ρi15(Λi1) − ξ 3
i1

N
s=1

aisxs2 + βi1, (8)

where ρi15(Λi1) = ρi13 + ρi14, βi1 = βi11 + βi12.
Thus, if we take

x∗

i2 = −ξi1


ci1 + ρi15(Λi1)

di


+

1
di

N
s=1

aisxs2

= −ξi1ρi1(Λi1) +
1
di

N
s=1

aisxs2, (9)

then, by (8) we can get

LVi1 ≤ diξ 3
i1(xi2 − x∗

i2) + diξ 3
i1x

∗

i2 + ξ 4
i1ρi15(Λi1)

− ξ 3
i1

N
s=1

aisxs2 + βi1

= −ci1ξ 4
i1 + diξ 3

i1(xi2 − x∗

i2) + βi1, (10)

where ci1 > 0 is a design parameter.
Step 2. We now construct a distributed virtual controller x∗

i3 for
the ξ̄i2-subsystem, where ξ̄i2 = (ξi1, ξi2)

T .
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By (1), (2) and (9) one has

dξi2 =


xi3 + fi2(x̄i2) − Fi2 −

1
di

N
s=1

aisxs3

dt

+


gi2(x̄i2) − Gi2


dω, (11)

where

Fi2 =

N
s=1

∂x∗

i2

∂xs1
(xs2 + fs1) +

N
s=1,s≠i

∂x∗

i2

∂xs2
fs2 +

∂2x∗

i2

∂y0
ẏ0

+

N
s,k=1,s≠k

∂2x∗

i2

∂xs1∂xk1
gs1gT

k1 +

N
s,k=1,s≠k

∂2x∗

i2

∂xs2∂xk2
gs2gT

k2

+

N
s,k=1,k≠i

∂2x∗

i2

∂xs1∂xk2
gs1gT

k2 +
1
2

N
s=1

∂2x∗

i2

∂x2s1
|gs1|2,

Gi2 =

N
s=1

∂x∗

i2

∂xs1
gs1 +

N
s=1,s≠i

∂x∗

i2

∂xs2
gs2. (12)

Choosing Vi2 = Vi1 +
1
4ξ

4
i2, which together with (10)–(11) implies

LVi2 ≤ −ci1ξ 4
i1 + diξ 3

i1(xi2 − x∗

i2) + ξ 3
i2xi3

+ ξ 3
i2 (fi2(x̄i2) − Fi2) +

3
2
ξ 2
i2 |gi2(x̄i2) − Gi2|

2

−
1
di

ξ 3
i2

N
s=1

aisxs3 + βi1. (13)

From (2) and Young’s inequality we have

diξ 3
i1(xi2 − x∗

i2) = diξ 3
i1


ξi2 + ξi1ρi1(Λi1) −

1
di

N
s=1

aisxs2


≤ δi21ξ

4
i1 + ξ 4

i2ρi21(Λi2) + βi21, (14)

where Λi2 = (ΛT
i1, x12, . . . , xN2)

T , βi21 is any positive constant;
δi21 > 0 is a constant, and ρi21(Λi2) is a nonnegative smooth func-
tion.

By (9), (12), Assumptions 1 and 2, there exist nonnegative
smooth functions ρi22(Λi2) and ρi23(Λi2) such that

|fi2 − Fi2| ≤ ρi22(Λi2),
3
2

|gi2 − Gi2|
2

≤ ρi23(Λi2). (15)

Thus, by (15) and Young’s inequality, it follows that

ξ 3
i2 (fi2(x̄i2) − Fi2) ≤ βi22 + ξ 4

i2ρi24(Λi2),

3
2
ξ 2
i2 |gi2(x̄i2) − Gi2|

2
≤ βi23 + ξ 4

i2ρi25(Λi2), (16)

where βi22 and βi23 are any positive constants; ρi24(Λi2) and
ρi25(Λi2) are nonnegative smooth functions.

Substituting (14) and (16) into (13) yields

LVi2 ≤ −(ci1 − δi21)ξ
4
i1 + ξ 3

i2xi3 + ξ 4
i2ρi26(Λi2)

+ βi1 + βi2 −
1
di

ξ 3
i2

N
s=1

aisxs3, (17)

where ρi26(Λi2) = ρi21(Λi1) + ρi24(Λi2) + ρi25(Λi2), βi2 = βi21 +

βi22 + βi23.
Thus, if we take

x∗

i3 = −ξi2 (ci2 + ρi26(Λi2)) +
1
di

N
s=1

aisxs3

= −ξi2ρi2(Λi2) +
1
di

N
s=1

aisxs3,
then, by (17) we can get

LVi2 ≤ −(ci1 − δi21)ξ
4
i1 − ci2ξ 4

i2 + ξ 3
i2(xi3 − x∗

i3) + βi1 + βi2,

where ci2 > 0 is a design parameter.
Deductive step. At this step, we aim to construct a distributed

virtual controller x∗

i,k+1 for the ξ̄ik-subsystem, where ξ̄ik = (ξi1, ξi2,

. . . , ξik)
T .

Assume that at step k − 1, there are a C2, proper and positive
definite Lyapunov function Vi,k−1(ξ̄i,k−1) and a set of virtual con-
trollers x∗

i2, . . . , x
∗

ik defined by (2) such that

LVi,k−1 ≤ −

k−2
j=1

(cij − δi,k−1,j)ξ
4
ij − ci,k−1ξ

4
i,k−1

+ ξ 3
i,k−1


xik − x∗

ik


+

k−1
s=1

βis, (18)

where cij > 0, j = 1, . . . , k−1, are design parameters; δi,k−1,s > 0
and βip are constants, s = 1, . . . , k − 2, p = 1, . . . , k − 1. Then, at
the kth step, one can choose the following Lyapunov function:

Vik = Vi,k−1 +
1
4
ξ 4
ik. (19)

By (18)–(19), take a similar proof process as that in (11)–(17), one
can get

LVi,k ≤ −

k−1
j=1

(cij − δi,k,j)ξ
4
ij + ξ 3

ikxi,k+1 + ξ 4
ikρik1(Λik)

+

k
s=1

βis −
1
di

ξ 3
ik

N
s=1

aisxs,k+1, (20)

where δi,k,j > 0 and βik are constants; ρik1(Λik) is a nonnegative
smooth function.

Thus, if we take

x∗

i,k+1 = −ξik (cik + ρik1(Λik)) +
1
di

N
s=1

aisxs,k+1

= −ξikρik +
1
di

N
s=1

aisxs,k+1,

then, by (20) we can get

LVi,k ≤ −

k−1
j=1

(cij − δi,k,j)ξ
4
ij − cikξ 4

i,k+1

+ ξik

xi,k+1 − x∗

i,k+1


+

k
s=1

βis,

where cik > 0 is a design parameter.
Step ni. We are now in a position to get (3) by analyzing the ξ̄i,ni-

subsystem, where ξ̄i,ni = (ξi1, ξi2, . . . , ξi,ni)
T .

By the definition of Vi,ni , similar to (20), one has

LVi,ni ≤ −

ni−1
j=1

(cij − δi,ni,j)ξ
4
ij + ξ 3

i,niui +

ni
s=1

βis

+ ξ 4
i,niρi,ni,1(Λi,ni) −

1
di

ξ 3
i,ni

N
s=1

aisus, (21)

where ci,ni > 0 is a design parameter; δi,ni,j > 0 and βis > 0 are
constants, j = 1, . . . , ni − 1, s = 1, . . . , ni; ρi,ni,1(Λi,ni) is a non-
negative smooth function. Thus, the theorem is true.
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Let

M =


1 −

1
d1

a11 −
1
d1

a12 · · · −
1
d1

a1N
...

...
. . .

...
1
dN

aN1 −
1
dN

aN2 · · · 1 −
1
dN

aNN

 . (22)

To complete the design of the distributed control laws, the invert-
ibility of the matrix M should be firstly proved in the following
lemma.

Lemma 2. If Assumption 3 holds, then M is an invertible matrix.

Proof. By Assumption 3 and Lemma 1, one has di > 0 for i =

1, . . . ,N . From the definition of di and (22) we have

M =



1
d1

0 · · · 0

0
1
d2

· · · 0

... · · ·
. . .

...

0 0 · · ·
1
dN



·

d1 − a11 −a12 · · · −a1N
...

...
. . .

...
−aN1 −aN2 · · · dN − aNN

 .

= diag


1
d1

, . . . ,
1
dN


(B + D − A)

= diag


1
d1

, . . . ,
1
dN


H,

where H = B + D − A. From Assumption 3, the leader is the root
of a spanning tree in Ḡ, which is equivalent to that the leader is
globally reachable in Ḡ. By Lemma 4 in Hu and Hong (2007) one
knows H is positive stable, whichmeans that all the eigenvalues of
H have positive real parts. Therefore, H is invertible. This together
with di > 0 results in the conclusion.

Based on Theorem 1 and Lemma 2, the distributed control laws
are explicitly given in the following theorem.

Theorem 2. Under Assumptions 1–3, if the distributed control laws
are chosen asu1

...
uN

 = −M−1

 ξ1,n1ρ1,n1(Λ1,n1)
...

ξN,nN ρN,nN (ΛN,nN )

 (23)

with cij > δi,ni,j, then we have

LVi,ni ≤ −c0Vi,ni +

ni
s=1

βis, (24)

where c0 = min1≤i≤N,1≤j≤ni 4(cij − δi,ni,j) > 0, δi,ni,ni = 0,
ρi,ni(Λi,ni) = ci,ni + ρi,ni,1(Λi,ni).

Proof. By (23) one hasu1
...
uN

 = −

 ξ1,n1ρ1,n1(Λ1,n1)
...

ξN,nN ρN,nN (ΛN,nN )


+ diag


1
d1

, . . . ,
1
dN


A

u1
...
uN

 ,
which yields

ui = −ξi,niρi,ni(Λi,ni) +
1
di

N
s=1

aisus. (25)

Substituting (25) into (21) gives (24).

Remark 2. The constructive proof in Theorems 1 and 2 proposes
a new distributed integrator backstepping design method for
nonlinear multi-agent systems for the first time. This design
method can deal with the interactions among agents and coupling
terms in dynamics effectively. One of the differences between
our method and the traditional integrator backstepping technique
is the error function ξi1 defined in (2). Considering that ξi1
contains the neighbors’ information, it makes the construction of
x∗

i2, x
∗

i3, . . . , ui very difficult. Also, how to deal with the crossing
term 1

di

N
s=1 aisxsj appeared in x∗

ij is nontrivial work.

5. Performance analysis

For the tracking errors, we have the following results.

Theorem 3. Under Assumptions 1–3 and the distributed control law
(23), the distributed practical output tracking problem for system
(1) is solvable (see Definition 2 for details).

Proof. Defining V =
N

i=1 Vi,ni , by (24) we have

LV ≤ −c0V + β0, (26)

where β0 =
N

i=1
ni

s=1 βis.
By (26) and Theorem 1 in Liu et al. (2007), the closed-loop sys-

tem (1) and (23) has an almost surely unique solution on [0, ∞).
Let

χ(t) = (ξ11, . . . , ξ1,n1 , . . . , ξN1, . . . , ξN,nN )T ,

ηl = inf{t : t ≥ t0, |χ(t)| ≥ l}, ∀l > 0,

and tl = min{ηl, t} for all t ≥ t0. Since |χ(·)| is bounded in the in-
terval [t0, tl] a.s., V (χ) is bounded on [t0, tl] a.s. From (26), it can be
obtained thatLV is also bounded on [t0, tl] a.s. By Dynkin formula
in Mao and Yuan (2006) one has

E(ec0tlV (χ(tl))) ≤ ec0t0EV (χ(t0)) + E
 tl

t0
ec0sLVds

+ c0E
 tl

t0
ec0sV (χ(s))ds. (27)

Note liml→∞ ηl = ∞. Then, letting l → ∞, by (27) we have

ec0tE(V (χ(t))) ≤ ec0t0EV (χ(t0)) + E
 t

t0
ec0sLVds

+ c0E
 t

t0
ec0sV (χ(s))ds,

which together with (26) implies

ec0tEV (χ(t)) ≤ ec0t0EV (χ(t0)) +
β0

c0
ec0t −

β0

c0
ec0t0 ,

or equivalently,

EV (χ(t)) ≤ e−c0(t−t0)EV (χ(t0)) +
β0

c0
(1 − e−c0(t−t0)). (28)

Step 1. We firstly show that for any given ε and initial value
x(t0), there is a finite-time T (x(t0), ε) such that

E|yi(t) − y0(t)|4 < ε, ∀t > T (x(t0), ε), i = 1, . . . ,N.
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Let y = ξ1 = (ξ11, . . . , ξN1)
T . By (28) one has

E|ξ1|
4

= E(ξ 2
11 + · · · + ξ 2

N1)
2

≤ 2E(ξ 4
11 + · · · + ξ 4

N1)

≤ 8EV

≤ 8

e−c0(t−t0)EV (χ(t0)) +

β0

c0
(1 − e−c0(t−t0))


. (29)

From the definition of ξs1, s = 1, . . . ,N , it can be seen that

ξ1 =

 N
s=1

a1s(y1 − ys) + b1(y1 − y0), . . . ,

N
s=1

aNs(yN − ys) + bN(yN − y0)
T

=

 N
s=1

a1s(y1 − y0) −

N
s=1

a1s(ys − y0) + b1(y1 − y0), . . . ,

N
s=1

aNs(yN − y0) −

N
s=1

aNs(yN − y0) + bN(yN − y0)
T

= (L + B)(y − 1Ny0). (30)

By Assumption 3 and (29)–(30) we have

E|y − 1Ny0|4 ≤ 8|(L + B)−1
|
4

e−c0(t−t0)EV (χ(t0))

+
β0

c0
(1 − e−c0(t−t0))


. (31)

By (31) and the definition of c0 and β0, for any ε > 0 and x(t0),
one can find a finite-time T (x(t0), ε) and choose cij, βij, i = 1, . . . ,
N, j = 1, . . . , ni, such that

E|ys(t) − y0(t)|4 < ε, ∀t > T (x(t0), ε), s = 1, . . . ,N.

Step 2. We now show that all the states of the closed-loop sys-
tem are bounded in probability.

From (28) one has

EV (χ(t)) ≤ EV (χ(t0)) +
β0

c0
. (32)

Let ξ = χ(t) and note that

EV (ξ) ≥


|ξ |>c

V (ξ)P(dw) ≥ inf
|ξ |>c

V (ξ)P(|ξ | > c). (33)

Then, by (32) and (33) we have

P(|ξ | > c) ≤

EV (χ(t0)) +
β0
c0

inf
|ξ |>c

V (ξ)
,

which together with the definition of V (ξ) gives

lim
c→∞

sup
t>t0

P(|ξ | > c) ≤ lim
c→∞

sup
t>t0

EV (χ(t0)) +
β0
c0

inf
|ξ |>c

V (ξ)
. (34)

By Definition 1 and (34), ξ is bounded in probability. This together
with Assumption 2 and (30) implies yi = xi1 is bounded in proba-
bility, i = 1, . . . ,N .

From the definition of ξi2 and (9) we arrive at

ξi2 = xi2 + ξi1ρi1(Λi1) −
1
di

N
s=1

aisxs2,
which yields
ξ12
ξ22
...

ξN2

 =


x12
x22
...

xN2

+


ξ11ρ11(Λ11)
ξ21ρ21(Λ21)

...
ξN1ρN1(ΛN1)



−



0
a12
d1

· · ·
a1N
d1

a21
d2

0 · · ·
a2N
d2

...
... · · ·

...
aN1

dN

aN2

dN
· · · 0



x12
x22
...

xN2



=


ξ11ρ11(Λ11)
ξ21ρ21(Λ21)

...
ξN1ρN1(ΛN1)

+ M


x12
x22
...

xN2

 . (35)

Notice that ξi1, ξi2 and xi1 are bounded in probability, by Lemma 2
and (35) one can conclude that xi2 is bounded in probability, i =

1, . . . ,N . Similarly, one can prove that xij, i = 1, . . . ,N, j =

3, . . . , ni, are bounded in probability. Therefore, all the states of
the closed-loop system are bounded in probability.

Thus, the theorem is true.

Theorem 4. Assumption 3 is necessary for the solvability of the
distributed practical output tracking problem of the system (1).

Proof. If the leader is not the root of any spanning tree in the di-
graph Ḡ, one can find some followers which are not connected to
the leader. For these followers, the tracking errors are not guaran-
teed to be arbitrarily small as the time goes on.

To show this point more clearly, we only prove the case when
G is strong connected. The other cases follow in a similar manner.
In this case, since the leader is not the root of any spanning tree
in the digraph Ḡ, one gets B = 0. Therefore, all the followers are
disconnected to the leader and the dynamics of followers’ outputs
yi(t) (i = 1, . . . ,N) have nothing to do with the leader’s output
y0(t). Then, noting that

E|yi(t) − y0(t)|4 ≥ E∥yi(t)| − |y0(t)∥4,

withAssumption 2,whether yi(t) is bounded or not eventually, one
can easily find a ε0 > 0 such that

E|yi(t) − y0(t)|4 > ε0, i = 1, . . . ,N.

By Definition 2, the distributed practical output tracking problem
for system (1) is unsolvable in this case. Therefore, Assumption 3
is necessary for solving the tracking problem.

Remark 3. The boundof tracking errors are explicitly given in (31),
from which one can find that the bound is related to the topology
of the graph. In fact,

|(L + B)−1
|
4

=

λmax


(L + B)−1((L + B)T )−12 . (36)

If the topology is undirected, then L+B is a symmetric matrix, and
(36) becomes

|(L + B)−1
|
4

=

λmax((L + B)−1)

4
= [λmin(L + B)]−4 .

Since λmin(L+B) shows the connectivity of the graph composed of
the leader and followers, weak connectivity of the graph may lead
to large |(L + B)−1

|
4.
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Remark 4. From (28) and (31), the outputs of the followers can
track the dynamic leader’s output y0(t) with an exponential rate.
Specifically, the convergence rate depends on the parameter c0 =

min1≤i≤N,1≤j≤ni 4(cij−δi,ni,j). One can choose larger cij to get a faster
convergence rate, at a cost of larger control effort.

Remark 5. For any ε > 0 and ε0 > 0, by (31) and Chebychev’s
inequality in Mao and Yuan (2006), there exists T > 0 such that
for all t > T ,

P{|y − 1Ny0| > ε} ≤
E|y − 1Ny0|4

ε4

≤

8β0
c0

|(L + B)−1
|
4
+ ε0

ε4
≤ ε′,

where ε′ can be made small enough by choosing parameters ap-
propriately. Therefore, the asymptotic tracking in probability can
be achieved in some sense.

Remark 6. Let d(t) be an unknown continuous disturbance or pa-
rameter belonging to a known compact set Ω ⊂ Rs. Consider the
followingmore general high-order stochastic nonlinear systems of
the form:

dxij = (xi,j+1 + f̃ij(x̄ij, d(t)))dt + g̃ij(x̄ij, d(t))dω,

j = 1, . . . , ni − 1,

dxi,ni = (ui + f̃i,ni(x̄i,ni , d(t)))dt + g̃i,ni(x̄i,ni , d(t))dω,

yi = xi1, (37)

where f̃ij and g̃ij are unknown smooth functions bounded by
knownnonnegative smooth functions (a same condition presented
by Assumption 1), i = 1, . . . ,N, j = 1, . . . , ni. If Assumptions 2–3
hold, then by repeating the controller design and performance
analysis process above, the solvability of the distributed practical
output tracking problem for system (37) can be shown similarly.
Thus, from this point, the results in this paper have some robust-
ness.

6. A simulation example

Consider the following stochastic nonlinear systemswith i = 3:

dxi1 = (xi2 + fi1(xi1))dt + gi1(xi1)dω,

dxi2 = (ui + fi2(x̄i2))dt + gi2(x̄i2)dω,

yi = xi1, (38)

where f11(x11) =
1
2x11 sin x11, g11(x11) =

1
3x11, f12(x̄12) = 0,

g11(x̄12) = x11 sin x12, fij(x̄ij) = 0, g2j(x̄2j) = 0, i = 2, 3, j = 1, 2,
g31(x31) = 0, g31(x̄32) = x31 cos2 x32.

The topology Ḡ is described by a32 = b1 = b2 = 1, a12 = a13 =

a21 = a23 = a31 = b3 = 0. The leader’s output y0(t) =
1
2 sin t .

By choosing c11 =
3
4 , c12 = 1, c21 =

3
8 , c22 = 1, c31 = 1, c32 =

5
32 in the distributed integrator backstepping design procedure
developed in Section 4, one can get

u1 = −30(2x11 + x12 − sin t),

u2 = −56

1
2
x21 + x22 −

1
4
sin t


,

u3 = −

9
8
x431 + 1 +

3
4


(x32 + 55x22 + 28x21 − 14 sin t)2

+
1
4

2/3
(x31 + x32 − x21 − x22). (39)

Letting

ei = yi − y0, i = 1, 2, 3,
Fig. 1. The response of closed-loop system (38)–(39).

and randomly, setting the initial values x11(0) = 3, x12(0) = −3,
x21(0) = −0.1, x22(0) = −0.4, x31(0) = −3, x32(0) = −0.2, we
obtain Fig. 1, which depicts the response of the closed-loop system
and shows the efficiency of the distributed tracking controller.

7. Concluding remarks

The distributed tracking problem for high-order stochastic non-
linear multi-agent systems with inherent nonlinear drift and dif-
fusion terms is investigated. A distributed integrator backstepping
design technique is developed, by which distributed tracking con-
trollers are designed to guarantee that all the states are bounded
in probability, and the tracking errors can be tuned to arbitrarily
small with a tunable exponential converge rate.

For the distributed control of stochastic nonlinear multi-agent
systems, many important issues are still open and worth investi-
gating, such as the distributed controls in the case where commu-
nication channel is with unknown parameters, quantization error,
etc.
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